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Simulation of a spin-wave instability from atomistic spin dynamics
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We study the spin dynamics of a Heisenberg model at finite temperature in the presence of an external field
or a uniaxial anisotropy. For the case of the uniaxial anisotropy, our simulations show that the macromoment
picture breaks down. An effect which we refer to as a spin-wave instability results in a nondissipative Bloch-
Bloembergen-type relaxation of the macromoment where the size of the macromoment changes and can even
be made to disappear. This relaxation mechanism is studied in detail by means of atomistic spin dynamics

simulations.
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I. INTRODUCTION

Relaxation processes for magnetization dynamics are
poorly understood but play a crucial role for spin dynamics
in general. In this paper, we address one of the most funda-
mental processes of magnetization dynamics: the uniform
motion of the magnetization in an anisotropy field. The uni-
form motion of the magnetization and the relaxation of the
uniform motion are of central importance in applications
(magnetic switching in storage media, etc.).! We study here a
ferromagnetic system which initially is excited by a finite
angle rotation of the magnetization with respect to the aniso-
tropy axis. This excitation brings the magnetization into a
uniform motion where the magnetization eventually relaxes
back to an alignment with the magnetization direction paral-
lel to the anisotropy axis. Different phenomenological mod-
els, such as Gilbert damping and Bloch-Bloembergen
damping,>* have been used for describing this macrolevel
relaxation of the magnetization. In this paper, we perform
simulations of magnetization dynamics on an atomic scale
and we study the consequences for the macroscale behavior
of the magnetization dynamics.

The initial rotation of the magnetization of a ferromagnet
in an external field can be seen as an excitation of a large
number of uniform k=0 magnons. During the relaxation pro-
cess these magnons interact, dissipating energy and angular
momentum. Relaxation can occur via two processes, one
where both energy and angular momentum are transferred
out (or in) of the magnetic system and the second where
energy is transferred within the magnetic system to other
nonuniform k#0 magnons. The first process, which de-
scribes a dissipative damping in the equations of motion for
magnetization dynamics, results in a Gilbert-type relaxation,
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where M is the macromoment, H is the effective field, vy is
the gyromagnetic ratio, and « is the damping parameter. The
second process, which is described by the precessional term
in the equations of motion, results in a special case (|M.]
constant) of the Bloch-Bloembergen damping,
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where the effective field is assumed to lie in the z direction
and T is a relaxation parameter. This second process is the
focus of this work.

We address here a mechanism for the relaxation of the
uniform motion of the magnetization within the spin system
itself which is seen to result in a Bloch-Bloembergen-type
damping of the magnetization of the system. Several such
mechanisms exist such as the Suhl instability,* two-magnon
scattering,>® four-magnon scattering,” etc. All of the men-
tioned mechanisms rely on the dipolar interactions resulting
in an energy lowering of nonuniform magnons and an energy
degeneracy between the uniform magnons and certain non-
uniform magnons.

In this paper, we study a different mechanism since dipo-
lar interactions are not even included in our simulations. The
mechanism that we address is instead due to the thermal
fluctuations on an atomic scale of the magnetization com-
bined with the nature of the uniaxial anisotropy. Such a
mechanism, which does not rely on dipolar interactions, was
studied by Safonov and Bertram® and recently by Kashuba’
and Garanin et al.'®!" where it was shown that a spin-wave
instability (SWI) develops in a uniaxial anisotropy field. As
we show in this paper based on theoretical considerations,
the instability should develop on the atomic length scale as
well as on the micrometer length scale which was treated by
Kashuba, provided certain conditions are fulfilled. The insta-
bility is shown to be caused by the altering of the nonuni-
form thermal magnetic excitations of the system as it under-
goes a uniform rotation.

II. DETAILS OF THE SPIN-DYNAMICS SIMULATIONS

There are at least two approaches for studying magnetiza-
tion dynamics in simulations. The most common is what is
pursued in micromagnetics, the solution of the phenomeno-
logical Landau Lifshitz Gilbert (LLG) equation on a mi-
crometer length scale for a continuum magnetization.'” An
alternative approach, which is utilized here, is based on solv-
ing the equations of motion for magnetization dynamics
where the magnetization on a nanoparticle or atomic scale is
represented by a Heisenberg Hamiltonian. The Heisenberg
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Hamiltonian is often successful in describing magnetic sys-
tems on an atomic scale, especially when using first-
principles calculations of the interatomic exchange. The cur-
rent method is based on atomistic spin dynamics which has
as a starting point a quantum-mechanical description from
density-functional theory of the evolution of the atomic
spins. Other works which have taken this approach can be
found in Refs. 13-15.

Our simulations are performed using the atomic spin dy-
namics (ASD) package'® which is based on an atomistic ap-
proach of spin dynamics. Interatomic exchange and magne-
tocrystalline anisotropy (MA) are included in the
Hamiltonian. We use a parametrization of the interatomic
exchange part of the form of a Heisenberg Hamiltonian,
where the exchange parameters are calculated from first-
principles theory. The effect of temperature is modeled by
Langevin dynamics. Connection to an external thermal bath
is modeled with a Gilbert-type damping. The simulations are
performed on bcc Fe using four coordination shells in the
Heisenberg Hamiltonian. In order to ease comparison, we
used the same exchange parameters as in Refs. 15 and 16.

III. DYNAMICS IN AN EXTERNAL FIELD

Different coarse-grained levels can be used for describing
magnetization dynamics. Here we will work with two levels:
(1) the individual atomic moments m; and (2) a macromo-
ment M, representing the sum of the individual atomic mo-
ments of the total system. Any atomic moment is typically
exposed to an interatomic exchange field B; on the order
of 1000 T. At finite temperature, the atomic moments fluctu-
ate around a common direction. On an average, below the
critical temperature, there is a finite magnetic moment and
the interatomic exchange field averaged over all atoms is
directed along the average moment. The size of the average
moment or the macromoment depends on the spread of the
individual atomic moments, which is governed by the tem-
perature. The situation is illustrated in the top part of Fig. 1,
where the distribution of atomic moments is illustrated for
T=0 K [Fig. 1(a)] and at finite temperature [Fig. 1(b)]. This
description of magnetization at finite temperature is the start-
ing point for our discussion.

If the system is exposed to an external field, the average
moment will precess in this external field. The atomic mo-
ments precess in a uniform way without distortion of their
internal distribution. The torque exerted by the external field
om;/ dt=—ym; X B, ; on each atom i results in an equal an-
gular velocity of all the atomic moments. This is illustrated
in Fig. 2 (top left) where the torque (or dm;/dr) is shown as
a function of angle (6) between the magnetic moment and
applied field. In Fig. 2 (top right) we also show the resulting
angular velocity (Jd¢;/dr) of each atomic spin. The angular
velocity is constant and seen to be independent of #; hence
the angular velocity is the same for all spins and it stands
clear that an external field will not influence the relative ori-
entation of the atomic spins. The evolution of the distribution
of the atomic moments at finite temperature during relax-
ation in an external field is schematically shown in Fig. 1(c).
The figure illustrates the fact that an external field results in
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a. T=0 b. T>0

c. External field axis

FIG. 1. (a) and (b) show the distribution of atomic moments of
the spin dynamics simulations. At finite temperature, the orienta-
tions of the atomic spins are distributed around a (b) common axis.
(a) The angles 6 and ¢ discussed in the text are also defined. (c) and
(d) show the evolution of the spin distribution, as given by the
evolution of the circular gray disk representing the distribution of
magnetic moments defined in (b). The system is at finite tempera-
ture in an (c) external field and in a (d) uniaxial anisotropy.

a simple rotation of the magnetization and that all individual
atomic spins rotate without changing the relative direction to
all other atomic spins.

IV. DYNAMICS IN A UNIAXIAL ANISOTROPY FIELD

If there is a uniaxial anisotropy in the system, such as
magnetocrystalline anisotropy or shape anisotropy, an exci-
tation of the macromoment in the anisotropy (by a rotation)
will in general lead to a precessional motion of the macro-
moment in the anisotropy field which appears similar to the
precession in an external field. For the case of a uniaxial
magnetocrystalline anisotropy, which we will consider now,
there are however important differences in the spin dynam-
ics. We define the anisotropy energy for each atomic moment
as £ :keg, where k is the anisotropy constant which deter-
mines the strength of the anisotropy and e, is the z compo-
nent of the direction of the atomic moment. The torque and
angular velocity on any atomic spin are illustrated in Fig. 2
for both an easy-axis anisotropy (middle panels) and an easy-
plane anisotropy (lower panels). The torque is clearly differ-
ent than in the case of an applied field (top panels) and, more
importantly, the angular velocity of each spin is no longer
independent of #. Hence, spin dynamics in a uniaxial aniso-
tropy field does not lead to a uniform rotation of the atomic
spins. Instead the internal distribution of the atomic moments
is distorted during the rotation, as illustrated in Fig. 1(d). For
the case of the external field the distribution of atomic spins
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FIG. 2. The plots illustrate the change in the magnetic moment
due to an external field, easy-axis anisotropy, and an easy-plane
anisotropy. The graphs on the left-hand side give the magnitude
|om/ |, while the graphs on the right-hand side give the angular
velocity of the atomic spins with respect to angle 6 between spin
and applied field or anisotropy axis. Note that in the case of a
uniaxial anisotropy field, 6 is defined as the angle between moment
and a fixed crystallographic direction of the anisotropy field (e.g.,
100). H is the strength of the external field and X is the strength of
the anisotropy field.

remained constant with the result that the size of the macro-
moment remained constant during the precession. Hence, the
process could conveniently be described within a macromo-
ment picture. This is not true for the case of the uniaxial
anisotropy and the macromoment description breaks down.
Since the internal distribution of the atomic moments is
changed during the precession and the direction of any
atomic moment in general changes relative to all other mo-
ments in the system, the size of the macromoment changes
which leads to a considerably more complex macrolevel be-
havior. In the rotating frame of the average moment, the
easy-axis anisotropy is seen to counteract the precession of
atomic moments in the effective exchange field, while the
hard-axis anisotropy is seen to enhance the precession in the
effective exchange field. As the average moment precesses in
the uniaxial anisotropy, the atomic moments will have a ten-
dency to spread reducing the net moment of the system, as
shown in Fig. 2(d). We will refer to this behavior as a SWI,
according to the discussion by Kashuba (Ref. 9).

As we will show in our simulations, the SWI results in an
apparent damping of the uniform motion of the macromo-
ment. We define the anisotropy axis as the z axis. What is
significant for this damping is the vanishing of the macromo-
ment components perpendicular (x,y) to the anisotropy axis
and the constant value of the parallel macromoment compo-
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a. Bloch-Bloembergen
damping
(IMJ=const.)

b. Gilbert damping
(IM|=const.)

FIG. 3. The figures illustrate the (a) Bloch-Bloembergen damp-
ing and the (b) Gilbert damping for a macromoment.

nent (z). Hence, during the SWI, the average magnetization
of the system drops and only the z component of the average
magnetization remains finite as the x and y components van-
ish. This gives the relaxation of the macromoment due to the
SWI a Bloch-Bloembergen form where |M,| is constant.
Thus, due to the SWI there is an alignment of the macromo-
ment with the anisotropy axis where the alignment occurs
maintaining a constant value of the z component of the mac-
romoment. This is illustrated in Fig. 3. This shows that a
redistribution of angular momentum and energy within the
magnetic system is taking place. Hence, there is a relaxation
taking place even though the dissipative damping « is set to
zero. In reality, there is also a finite dissipative damping «
and therefore also a Gilbert contribution to the relaxation of
the macromoment. In some of our simulations, in order to
clearly observe the Bloch-Bloembergen damping with M,
=constant, we set a=0. The fact that the value of the z com-
ponent of the macromoment is constant during the SWI is
expected since with zero damping the precessional torque of
the uniaxial anisotropy is the only source or drain of angular
momentum within the spin system and this torque lacks z
component.

A. Simulating bcc Fe with different strengths of
uniaxial anisotropy

In order to study the SWI of bcc Fe, we choose a 20
X 20X 20 cell with periodic boundary conditions, encom-
passing 16000 atomic spins and three different values of
the strength of a wuniaxial anisotropy -2 mRy/atom,
—0.2 mRy/atom, and —0.02 mRy/atom, with an easy axis
directed along the z axis. Materials with Fe atoms in a bcc
environment and enhanced anisotropy may be found experi-
mentally in magnetic multilayers, e.g., with Pt. The aniso-
tropy can here be significantly stronger than in the bulk case.
The magnetic anisotropy of a tetragonal FeCo/Pt(001) super-
lattice was measured'” to K,=2.28 MJ m~>, corresponding
to K,~0.012 mRy/atom. The perpendicular magnetic aniso-
tropy of (Co,Fe)/Pt multilayers was measured by Sato et al.'®
to K,=025 erg/cm™2, corresponding to K,~0.027
mRy/atom. The strongest magnetic anisotropy found in ex-
periments is for SmCos (Refs. 19 and 20) with values of
K,=7.7 MJ m~3, corresponding to K,~0.31 mRy/f.u. As
will be presented below, we see SWI phenomena in our
simulations for the anisotropy values —2 mRy/atom and
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FIG. 4. Calculated evolution of the total magnetization of bcc Fe
as a function of time for different angles between the initial mag-
netization and the applied field and for different values of the damp-
ing parameter. The temperature was 100 K.

—0.2 mRy/atom but not for —0.02 mRy/atom. In order to
simplify, we have not considered nonmagnetic (e.g., Pt) at-
oms in the simulations but only the effect they have on the
uniaxial anisotropy field. As we will show, these systems can
display an instability on a time scale of picoseconds (shown
in Fig. 4). We now investigate the dependence of the SWI on
thermal fluctuations and damping, and we investigate the re-
distribution of the atomic moments which takes place.

In Fig. 4, we show a series of simulations for three dif-
ferent damping parameters « and two different initial angles
6=45° and 6=90°. In these simulations, we used a uniaxial
energy of —2 mRy/atom. For the macromoment, there is
now a Bloch-Bloembergen-type damping due to the SWI and
a Gilbert-type damping due to the inclusion of a dissipative
damping in the microscopic equations of motion. For the
case of §=45° we see the presence of both these damping
terms (see Fig. 4). For a=0.1 the Gilbert term is seen to
dominate. After a short dip in the magnitude of the magne-
tization due to the SWI, the magnitude of the magnetization
is seen to recover. For a=0.01 and 0.001, the Bloch-
Bloembergen damping is seen to dominate, and the size of
the magnetic moment reaches a value of M/M,~=~0.6-0.7.
For 6=90° the situation is slightly different. At this specific
angle, only the SWI contributes to the relaxation of the sys-
tem. For this reason, the behavior in Fig. 4 is fairly indepen-
dent of the magnitude of «, and the magnetization evolves
with time to a value where M/M;=~0-0.1.

The cause of the SWI is an internal redistribution of the
atomic moments. In Fig. 5 we show a histogram of the
angles of the atomic moments with respect to the average
atomic moment. The distribution is shown for different
points in time for two damping parameters a=0.0 and «
=0.1 (with a uniaxial energy of —2 mRy/atom). As a first
observation, in contrast to what one might expect, the size of
a does not change the rate at which the directions of the
atomic moments are redistributed. This is illustrated in both
the upper and lower panels of Fig. 5. One would simple-
mindedly expect a large damping of the atomic moments in
the interatomic exchange field to reduce the spread of the
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FIG. 5. Distribution of the angles between the average macro-
moment and each atomic moment of the bcc Fe simulation cell. In
the simulation, the initial angle between the average magnetization
and the anisotropy axis is #=90°. The top panel shows the distri-
bution of @ for the different atomic spins and the bottom panel
shows the distribution of ¢ defined in Fig. 1.

atomic moments, which would counteract the SWI. How-
ever, this does not happen. A second observation (see upper
panel of Fig. 5) is that the distribution of # is smeared out
during the SWI. This is consistent with the fact that the net
moment of the system is reduced. A third observation (see
lower panel of Fig. 5) is that the distribution of ¢ is heavily
distorted during the SWI. At #=0 the distribution is constant,
which is also illustrated by the circular disk in Fig. 1(d). At
t=0.2 ps the distribution is distorted, which is consistent
with the development of an elliptically shaped disk in Fig.
1(d).

In order to explain the observations in Fig. 5, we show in
Fig. 6 a histogram of the energy distribution of the magnetic
moments at different points in time during the simulation.
The histograms for the energy distribution at different points
in time fall on top of each other and coincide with the Boltz-
mann distribution at 300 K, which demonstrates that the
simulations are done at thermal equilibrium, throughout the
SWI. This explains the first observation of Fig. 5. The effect
of the dissipative damping in Langevin dynamics is to bring
the system to thermal equilibrium. But since the SWI con-
serves the thermal distribution of the system, damping has no
net effect on the distribution of the directions of the atomic
moments. The second and third observations from Fig. 5
concern the change in angular distribution of the atomic mo-
ments and explain how the fact that the system remains in
thermal equilibrium can be consistent with a reduction in the
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FIG. 6. Histogram of the energies of the atomic spins for a
simulation of bce Fe with a=0.0 and #=90°. Although there is a
large drop of the average moment of the system, the energy distri-
bution does not change significantly during the development of the
SWI. Data for different times of the simulation are shown.

average magnetization. The angular distribution of the
atomic moments is heavily distorted, whereas the energy dis-
tribution remains constant. For finite damping, the situation
changes slightly. We show in Fig. 7 how the magnetic en-
ergy, which here is the sum of exchange and anisotropy en-
ergy, evolves in time. For the zero damping case of Fig. 7,
the lowering of the anisotropy energy is compensated by an
increase in the exchange energy, leaving the total energy
constant. This is contrasted by the finite damping cases with
a=0.001, respectively, 0.1, where the initial increase in ex-
change energy decays toward its equilibrium value at the
given temperature. In both cases, the time evolution of the
atomic moments lowers the total energy. The reason for the
different behaviors can be explained as follows. For the zero
damping case a@=0.000, the sum of the exchange and the
anisotropy energy is a constant of motion. At the start of the
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FIG. 7. (Color online) The evolution in time of the total energy,
the exchange energy, and the anisotropy energy, for various damp-
ing parameters.
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FIG. 8. Simulations at different temperatures of bcc Fe with a
=0.0 and 6=90°. The SWI develops on the same time scale for
different temperatures.

simulations, the magnetic moments are in thermal equilib-
rium at 7=300 K and the total exchange energy is constant.
When the anisotropy field is “turned on” at r=0, the system
is not in an anisotropy energy minimum as the average mag-
netization is at an angle #=90° to the easy axis. The evolving
magnetic moments lower their anisotropy energy with an
amount of energy that is in its entity transferred to exchange
energy, since energy cannot dissipate in or out of the system.
With a small but finite damping @=0.001, the magnetic ex-
citations can dissipate and lower the exchange energy. With a
large damping of a=0.100, the exchange energy dissipates to
within 5 ps to reach its equilibrium value at temperature 7'
=300 K.

Thermal fluctuations play an important role for the devel-
opment of the SWI. Naturally there is, therefore, a depen-
dence of the time scale of the instability on the temperature.
We found however that in the range 10-300 K, the time scale
is fairly independent on the temperature as shown in Fig. 8
(again we used a uniaxial energy of —2 mRy/atom for these
simulated data). The thermal fluctuations also have another
role. For systems where the macromoment is unable to relax
along an anisotropy axis (i.e., when #=90°), thermal fluctua-
tions turn out as the only mechanism for the system to come
out of the chaotic SWI state when the anisotropy field is
removed. Starting from a chaotic state where the SWI has
been allowed to bring the system to a zero total moment
state, we suddenly remove the anisotropy field and observe
the evolution of the system (see Fig. 9). It is now only the
complete randomness of the thermal fluctuations that even-
tually is able to evolve the system back to a ferromagnetic
state. The thermal fluctuations will eventually bring the spin
distribution, which has a total moment close to zero, to a spin
distribution with a total moment approaching a finite value.
The process is, however, very time consuming, as shown in
Fig. 5, and only observed for the largest damping parameter
in the present simulations.

We now compare simulated results using different
strengths of the uniaxial anisotropy as well as different val-
ues of the damping parameter. The interatomic exchange in-
teractions and the size of the simulation cell were kept the
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FIG. 9. Starting from bcc Fe in a SWI state the anisotropy field
is removed (at 7=300 K). The system is seen to evolve back
slowly toward a ferromagnetic state.

same as in previous simulations. The temperature was 300 K.
In Fig. 10 we show the case where #=90° for three values of
uniaxial anisotropy —2 mRy/atom, —0.2 mRy/atom, and
—0.02 mRy/atom. Note that the case with an anisotropy of
—2 mRy/atom was also considered in Fig. 4, although in Fig.
10 we show the dynamical response over a larger time inter-
val (5 ps). For the strongest value of the uniaxial anisotropy,
the SWI develops rather easily; whereas for the lowest value
of the uniaxial anisotropy the SWI does not develop at all, at
least not in the time interval considered. The intermediate
value of the uniaxial anisotropy results in an intermediate
situation where the macromoment oscillates in time (at least
in this time interval we will return to this situation below).
The reason behind the different behaviors shown in Fig. 10 is
a competition between the strength of the uniaxial aniso-
tropy, which in line with the discussion around Fig. 1, tends
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FIG. 10. (Color online) Calculated evolution of the magnetiza-
tion of bcc Fe as a function of time with different values of the
uniaxial anisotropy and for different values of the damping param-
eter. The magnetization is initially at angle #=90° to the anisotropy
axis.
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FIG. 11. (Color online) Same as Fig. 10 but with the magneti-
zation initially at angle 6=45° to the anisotropy axis.

to spread the distribution of all atomic moments, and the
importance of the other relevant interactions in the system—
primarily—the strength of the interatomic exchange interac-
tion.

In Fig. 11 we show very similar simulations as in Fig. 10,
with the only difference being that we show results for the
case when 6=45°. Here the intermediate and lowest value of
the uniaxial anisotropy does not have sufficient strength to
drive the SWI, whereas in the largest value of the anisotropy
the SWI develops and a Bloch-Bloembergen damping oc-
curs. This was also illustrated in Fig. 4 but over a shorter
time interval.

The case when 6=45° and with a uniaxial anisotropy of
—0.2 mRy/atom is, as Fig. 10 suggests, a particularly inter-

1

0.9¢ 4

Average, normalized magnetic moment, M/M0

0.4} 1
0.3 — 0:=0.0000 . 8
—— 0=0.0001 6=90
021 6=0.0010 i
0.1l -~ 0=0.0100 ,
““““ 0=0.1000
0 T L L L
0 10 20 30 40 50

Time t (ps)

FIG. 12. (Color online) Same as the middle panel of Fig. 10 but
showing the evolution of the magnetization up to 50 ps. For «
=0,...,0.01, the magnetization oscillates in the interval
0.55-0.70M. For a«=0.1 the magnetization recovers after ~20 ps
to the value M =0.88M which is the thermally equilibrated value at
temperature 7=300 K.
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TABLE I. Simulations for varying cell size (90° case). The
entries describe the possible occurrence of a SWI during the simu-
lation time =5 ps.

K,

(mRy/atom) a L=10 L=15 L=20 L=25
-2.0 0-0.1 strong strong strong strong
-0.2 0-0.1 no weak  medium  medium

-0.02 0-0.1 no no no no

esting case, since here the anisotropy and exchange interac-
tions seem to be tuned into a situation where both are very
influential for the evolution of the macrospin. In fact, Fig. 10
suggests that in this case the magnetization oscillates be-
tween a Gilbert-type damping and a Bloch-Bloembergen-
type damping. For this reason, we have extended the simu-
lations over a larger time interval (50 ps), and the results are
shown in Fig. 12. It is to be noted from this figure that for
this borderline case, the evolution of the macrospin depends
not only on the competition between interatomic exchange
and uniaxial anisotropy but also on the value of the damping
parameter. For large values of the damping, a regular Gilbert
damping behavior is found. For small and intermediate val-
ues of the damping, the macrospin is found to oscillate in
time but, otherwise, following a dynamic response which
resembles Bloch-Bloembergen damping. Hence the data in
Fig. 12 show that by careful tuning of the relative importance
of the uniaxial anisotropy, exchange interaction, and damp-
ing, one may obtain a behavior which is more complex than
that given by pure Gilbert or Bloch-Bloembergen damping.

The finite size of the simulation cell restricts the possible
spin-wave excitations. The simulations described so far were
all for L=20 corresponding to 16000 magnetic moments.
With a smaller cell, only the modes with short wavelengths
can occur. This means that the weaker uniaxial anisotropy
cannot drive an SWI unless the simulation cell is large
enough. The trend if a SWI can occur or not for the different
simulation cells, with cell size L=10, 15, 20, and 25, is pre-
sented in Tables I and II, for the 90° and 45° cases, respec-
tively. In the table for the 90° case, we have defined a strong
SWI as the case where the magnetization drops below
0.2M, a medium SWI as when it drops below 0.6M,, a
weak SWI as when the magnetization drops with
0.05-0.20M, and no SWI when the magnetization drops

TABLE II. Simulations for varying cell size (45° case). The
entries describe the possible occurrence of a SWI during the simu-
lation time =5 ps.

K

(mRy/;tom) e L=10 L=15 L=20 L=25
-2.0 0-0.01  strong  strong  strong  strong
-2.0 0.1 weak weak weak weak
-0.2 0-0.01 no no no weak
-0.2 0.1 no no no no
-0.02 0-0.1 no no no no
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less than 0.05M,. In the table for the 45° case, the same
notation is used apart from here we redefine strong SWI as
when the magnetization drops below 0.65M, (which here
corresponds to a Bloch-Bloembergen damping). The results
of Tables I and II correspond well to the results of Ref.
10 [see, e.g., Eq. (28)]. For the anisotropy values —2
mRy/atom, —0.2 mRy/atom, and —0.02 mRy/atom and with
the exchange energy summed up over all coordination shells
to =10 mRy/atom, we get N,,,=5,16,51, where N, is the
largest cell size that suppresses SWI effects.

V. DISCUSSION AND SUMMARY

In this paper, we have investigated the conditions when a
SWI may occur. In order for this to happen, a number of
requirements must be met. First, there must be an initial
perturbation to the system, e.g., thermal fluctuations, such
that the atomic moments start to deviate from the direction of
the macromoment. Second, there must be a magnetic aniso-
tropy in the system. The presence of a SWI is found to, a
large degree, be determined by a competition between the
magnetic anisotropy and the strength of the exchange inter-
action. In some special cases, where these two contributions
are very delicately balanced, the value of the damping pa-
rameter can finally determine whether or not a SWI occurs.
We have also found that the size of the simulation cell is
influential if a SWI occurs, a conclusion which is in agree-
ment with the results of Ref. 10.

Another conclusion we reach from our simulations is that
due to thermal fluctuations, the simple model of a macromo-
ment precessing in a uniaxial anisotropy is found to be inac-
curate. The uniaxial anisotropy leads to a nonuniform rota-
tion of the composing atomic moments. On a short time
scale, the effect is small. On a longer time scale or for larger
anisotropies, there are severe consequences. An instability
appears which effectively leads to a Bloch-Bloembergen
damping of the magnetization.

Our simulations point to a technical avenue for designing
media for data storage and magnetic memories, where for,
e.g., the grain size of the storage media would be a materials
property which one could compare to the various sizes of our
simulation cell. Media with a small grain size could possibly
then exhibit a weaker tendency for a SWI to be observed. If
experimental evidence for the spin-wave instability could be
demonstrated, it would imply that there is an increased im-
portance to a fine grain description of the magnetization dy-
namics in simulations and it would show that macromoment
models lose accuracy when anisotropies are involved in the
dynamics. Further experimental studies addressing this issue
are highly desired.
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